
Context Matters: Qualitative Insights into Developers’ Approaches and Challenges
with Software Composition Analysis

Elizabeth Lin, Sparsha Gowda, William Enck, and Dominik Wermke
North Carolina State University

{etlin, ssgowda3, whenck, dwermke}@ncsu.edu

Abstract
Software Composition Analysis (SCA) is an important part
in the software security lifecycle. Establishing the individual
software components and versions that make up an applica-
tion allows for identifying and remediating vulnerabilities.
However, SCA tools have not kept up with the ever grow-
ing number of new vulnerabilities each year. Developers are
flooded with vulnerability alerts and often struggle to quickly
remediate critical issues with external components.

We conducted 20 interviews with developers to investigate
their processes and challenges around using SCA in their
software projects. Interviews covered how SCA tools are inte-
grated into workflows, how reports are interpreted and acted
upon, and what challenges were encountered. We find that
SCA tools are most often integrated into build pipelines and
that users report that information in SCA alerts is too generic
and lack context, specifically context on infrastructure, net-
work configurations, reachability, and exploitability. Based on
our findings we conclude that context matters throughout the
SCA process, including for evaluating impact, when to trigger
SCA scan runners, and how to integrate and communicate
tool findings.

1 Introduction

Software Composition Analysis (SCA) is a method for
identifying and analyzing software components. SCA tools
identify third-party components and libraries in software ap-
plications, enabling the tracking and mitigation of vulnerabil-
ities in these components and the management of software
licenses. External software components make managing vul-
nerabilities challenging, as they are often outside the direct
control of the developers. Various studies estimate more than
75% of applications include third party open source soft-
ware [1], [29], that 96% of codebases contain open source
software, and that 77% of the code in the codebases originate
from open source [1]. Consequently, software composition
analysis is becoming increasingly important, allowing the

industry to identify and manage vulnerabilities in their third-
party components.

The need for SCA tools is further underscored by the rise of
published vulnerability reports. In 2019, 17,308 CVEs were
published. Five years later in 2024, the number of published
CVEs has grown to 29,004 [12]. This growing number of
reported vulnerabilities has caused companies to integrate
SCA tools into their development pipelines to filter and man-
age security risks. The “Log4Shell” arbitrary code execution
vulnerability in the Log4j Java logging framework is a widely
referenced high-impact vulnerability in a third-party compo-
nent [26]. Reported in 2021, companies struggled to identify
whether and where Log4j was used in their systems and even
today there remain vulnerable systems in the wild [47]. The
US government has again emphasized the importance of man-
aging vulnerabilities in third-party components in the 2025
Executive Order 14144 [16]. SCA tools help following federal
requirements such as these by identifying third-party risks
and generating compliance artifacts such as SBOMs.

While SCA tools simplify managing security risk for third-
party components, the large number of alerts they output can
be a challenge. Two factors contribute to the large number of
alerts: (1) the large number of published CVEs and (2) a large
dependency tree from all the imported external components.
The large number of alerts can result in alert fatigue [44],
where developers ignore vulnerability alerts because of being
overwhelmed by them. Managing vulnerabilities in external
libraries is challenging, as they are often maintained by others
and may include additional dependencies. Developers also
must often wait for maintainers to address issues in their
external components, further complicating resolution [20].

Previous studies on SCA have looked into how different
SCA tools compare against each other [21], [41], [55]. How-
ever, they lack understanding on how SCA users interact with
the tools and the actions they take after receiving results from
the tool. Often, software vulnerabilities in external libraries
are resolved when developers update to non-vulnerable re-
lease. Updating external libraries may also introduce com-
patibility issues in applications. For businesses that rely on

software systems for their everyday operations, an unexpected
issue can interrupt or even halt their business.

To address the gaps around integration and encountered
challenges from previous studies, we conducted an interview-
based qualitative study with 20 professionals focused on SCA
users’ experiences based on 4 research questions:

RQ1: How do users interact with SCA tools? We want to
understand how users interact with SCA tools. There are two
parts to this question: (1) how the SCA tools are run and (2)
actions after receiving output from an SCA scan. We want to
investigate if and how SCA tool integrate into the software
development pipeline and how frequently SCA scans are run.
We also want to understand how the SCA tool outputs are
interpreted and the actions taken based on these outputs.

RQ2: What are the challenges when deploying SCA tools?
Our second research question is an extension to the first part
of RQ1. We want to identify challenges related to running the
tools, as well as investigate if new challenges emerge if orga-
nizations scale the SCA process to more or larger projects.

RQ3: What are the challenges when acting on SCA results?
Our third research question is an extension to the second
part of RQ1. We want to understand if there are challenges
related to resolving the alerts. Resolving issues in external
code may be more complicated as the user may not have a
full understanding of imported code.

RQ4: How can the SCA process be improved? From the chal-
lenges and issues we identified in previous RQs, we want to
identify improvements that could be made to SCA processes
and tools.

By addressing these questions and identifying areas for
improvement, we aim to support the further adoption of SCA
tools and drive their development and deployment towards
more effective and accessible vulnerability management.

Key Findings: We observe that additional context is needed
across the entire SCA process: (1) The lack of vulnerability
context requires security engineers to manually review the risk
and impact of the vulnerability; (2) Vulnerabilities in external
components are continually discovered and SCA scans can
halt build pipelines for unrelated reasons, therefore when and
how the SCA scan runs in the development cycle matter; and
(3) Scaling the SCA process to multiple teams and projects
can generate overhead when communicating results and fixing
vulnerabilities. Context matters throughout the entire SCA
process, and more and better context relating to infrastructure,
network configurations, reachability, and exploitability will
help streamline vulnerability management. The integration
of SCA should take into account context of the application,
the vulnerability, and also the organization’s development
pipelines.

Figure 1: Common ways SCA tools are integrated into soft-
ware lifecycles.

2 Background and Related Work

In this section we discuss topics relevant to our study and
prior research in those areas.
Software Composition Analysis: SCA identifies software
components in an application. Initially, SCA was used for
open source license management, and Ombredanne [32] dis-
cusses challenges in using SCA for license compliance. How-
ever, as security concerns with the software supply chain
grew, SCA expanded to vulnerability management. Note that
SCA should not be confused with Static Application Security
Testing (SAST) tools, which are used to identify new vulnera-
bilities within the main application. SCA complements SAST,
providing insight into known vulnerabilities in imported soft-
ware components. Figure 1 shows three common ways SCA
is integrated into software lifecycles.

Few studies have performed in-depth treatments of SCA
tools and security. Imtiaz, Thorn, and Williams [21] com-
pared the analysis reports of 9 industry-leading SCA tools on
OpenMRS, a large web application. They found that different
tools report different results and proposed future directions
related to false positives and continuous monitoring. A more
recent study [41] had similar findings. Several studies [13],
[14], [31], [55] have investigated the Java ecosystem, identi-
fying the challenges it presents for SCA tools, which include
those that result from code modifications [13] and cloning or
shading code from software components [14].

While this prior work has considered how SCA tool re-
sults differ, it fails to understand how developers interpret
the results for actions such as vulnerability remediation. We
want to understand if there are any prioritization processes
for the results, as the large number of security vulnerabili-
ties can overwhelm developers [19], [42]. Then we want to
understand how the results are received by users, how they de-
termine if the vulnerability requires their attention and needs
to be resolved. Finally, we want to understand what parts of
determining and resolving the vulnerability is automated.
Vulnerability Data and Management: Software vulnerabil-
ity data is required for SCA tools to identify vulnerabilities
in applications. The National Vulnerability Database (NVD)
is the oldest and most widely used vulnerability database.
NVD uses the Common Vulnerabilities and Exposures (CVE)
system, which includes a CVE ID, a description of the vulner-
ability, and public references. NVD also often enriches CVEs

with a CVSS severity score [40], though scaling issues has
recently raised doubts into the viability of doing so in the long
term [30], [43], [53]. Each vulnerability database has its own
identifier prefix, though they unilaterally reference the CVE
ID as a canonical identifier. Vulnerabilities are colloquially
known as “CVEs.”

Prior work has extensively considered a range of vulnera-
bility data and management topics [24], [28], [34], [38], in
various ecosystems [2], [25], [49], [54], [57]. Vuln4Real [35]
measures vulnerable dependencies in the Java ecosystem. Wu
et al. [52] investigated the impact of a vulnerability in a de-
pendency on an application based on call graph paths and
reachability of functions. Pashchenko, Vu, and Massacci [36]
conducted a qualitative study with developers to understand
the factors that impact dependency selection decisions. Plate,
Ponta, and Sabetta [37] proposed an approach to assess the
impact of code changes in security fixes.

Unfortunately, the lack and inconsistency of vulnerability
data [4] makes it hard to determine the impact of a vulnera-
ble dependency on an application, including if it matters at
all. Prior studies [9], [15], [39] have pointed out the need to
automatically discover software patch data for vulnerability
discovery and repair.

Interview Studies: Qualitative research uses surveys or inter-
views to gather user opinions and is a growing research area
in the security literature. Multiple qualitative studies have
emerged to address challenges with vulnerability manage-
ment [3], [5], [6], [22], [48]. Barrett et al. [8] conducted 12
interviews with sysadmins, managers, team leads, and oth-
ers in various roles about the security issues, concerns, and
challenges in their work. Gutfleisch et al. [18] interviewed de-
velopers about usability of their secure software development
processes, identifying a high impact of contextual factors such
as stakeholder pressure, presence of expertise, and collabo-
ration culture. Johnson et al. [22] interviewed developers on
their use of static analysis tools and desired improvements.

Prior qualitative studies have also considered the open
source ecosystem. Several studies [33], [45], [51] have dis-
cussed trust and barriers in the open source ecosystem.
Wermke et al. [50] discussed broad security-related challenges
in open source. The open source community relies on develop-
ers who contribute voluntarily, and there could be challenges
relating to issues such as code quality and maintenance [46].
Zhou, Vasilescu, and Kästner [56] discussed ‘forks’ in open
source and Bogart et al. [10] discussed how changes in open
source can break software.

3 Methodology

Over a 6 month period starting October 2024, we conducted
20 semi-structured interviews with industry professionals
with SCA experience. The interviews included discussions on
how the SCA tools were used, encountered challenges, and

how they can be improved. In this section, we outline our in-
terview guide, recruiting participants, conducting interviews,
and how we analyzed the interview data.

3.1 Study Setup
We opted for semi-structured interviews for our study to

gather deep insights from participants. Semi-structured inter-
views allow us to (1) ask questions we prepared and (2) dive
deeper into any interesting insights the participants have.

We based our interview guide on our research questions and
cognitive walk-throughs of six popular SCA tools. We further
refined our interview guide through feedback rounds with
other researchers and a pilot interview. Our final interview
structure covers questions related to the process of using and
integrating SCA tools, how SCA reports are interpreted, as
well as challenges when using the tools.
Cognitive Walk-Throughs: We wanted to understand the full
process related to SCA tools, from the selection of SCA tools
to resolving vulnerability alerts outputted from the SCA tool.
Therefore, before conducting the interviews, two researchers
conducted cognitive walk-throughs of six popular SCA tools:
(1) Snyk Open Source,1 (2) Grype,2 (3) GitHub Dependabot,3

(4) Endor Labs SCA,4 (5) OSV-Scanner,5 and (6) Semgrep
Supply Chain.6 We opted for both open source and proprietary
tools to cover a wide range of tools. The six SCA tools were
selected based on the following criteria: (1) the tool had to be
freely available to us and (2) the tool had to generate a report
of the vulnerabilities existing in the software components
because one of our research questions is concerned with the
handling of such reports. The selected tools only assisted us
in the walk-throughs and are not necessarily the tools our
participants use.

Our cognitive walk-through was focused on completing a
main task: running the the SCA tool on a sample application
and generating a vulnerability report and a subtask: rank or
filter the vulnerability alerts from the tool. We focused on
the following guiding questions while completing the task to
identify additional challenges or issues our interview guide
could focus on: (1) How is the tool used? (2) What do we
need to provide to the tool? (3) What does the tool output?
(4) What information is provided by the SCA tool? (5) What
(additional) features are provided by the SCA tool? These
walk-throughs served as one of the bases of questions we
asked in our interviews.
Interview Guide: We based our interview guide on our 4
main research questions. The structure of the interview guide
and general questions were initially informed by our research

1https://snyk.io/product/open-source-security-management/
2https://github.com/anchore/grype
3https://docs.github.com/en/code-security/dependabot
4https://www.endorlabs.com/use-cases/reachability-based-sca
5https://github.com/google/osv-scanner
6https://semgrep.dev/products/semgrep-supply-chain/

Intro
Introduction to the interview and obtaining verbal consent.

S1 Participant Demographics
Establish project context and role of participant.

S2 SCA Demographics
Explore general questions on SCA tool usage.

S3 SCA Tool Integration
Participant walk through of their SCA tool integration process. Iden-
tify challenges during the integration process.

S4 SCA Report and Interpretation
Participant walk through of actions after receiving output from SCA
tool. Explore methods and challenges for resolving vulnerabilities.

S5 SCA Tool Features
Explore various measures and features in SCA tool and the usefulness
of them.

S6 Opinions and Improvements
Explore participants’ views of problems and potential improvements.

Outro
Debrief and collect feedback for the interview.

Figure 2: Illustration of the flow of topics in the semi-
structured interviews. In each section, participants were pre-
sented with general questions and corresponding follow-ups,
but were generally free to diverge from this flow at will. Solid
boxes were required and dotted boxes were flexible sections.

questions, while the cognitive walk-throughs of SCA tools
provided us with specific questions and follow-ups. We also
collected feedback from researchers with interview experi-
ence on our interview guide. We conducted one pilot interview
and made minor updates to the interview guide based on the
feedback. As there were no major changes needed after the
pilot and feedback, we decided to proceed with interview-
ing actual participants. We conducted the initial interviews
provisionally to test our setup. As no major changes to the
interview guide were needed, we decided to included these
interviews in the final dataset.

After each interview, we reviewed our interview guide and
assessed any new information we learned. After six inter-
views, we identified two new topics related to challenges
with SCA tools. We added a follow-up question on whether
SCA tools perform differently for different programming lan-
guages and ecosystems. We added another follow-up question
on compatibility issues when fixing alerts through updating
dependency versions. Furthermore, we found that discussion
around tool features (S5) would often be discussed with tool
improvements, thus we moved the topic to a lower priority
and only asked it if we had extra time in the interviews. The
interview guide remained unchanged after interview 12. We
provide the final interview guide in Appendix A.

Interview Structure: Our interviews were based around non-
leading, open questions with specific sub-questions as follow-
ups, allowing interviewees to elaborate their thoughts and
answers. Figure 2 shows our final interview structure. We
started the interviews with introduction questions about the
participant’s organization and role (S1). Next, we proceeded
to ask about their SCA experience (S2), where we tried to
understand general information like which tool is used and
how the experience with the tool was. We then proceeded to
ask questions about how they integrate SCA tools into their
pipelines (S3). In this section, we also followed up on chal-
lenges when integrating the tools. After understanding how
SCA tools are integrated, we continued and asked questions
on how the SCA reports are interpreted and managed for re-
solving vulnerabilities identified from the SCA tools (S4).
We also focused on any challenges the users run into when
interpreting the SCA results. Finally, we asked users about
their opinions on SCA tools and how they believe the tools
could be improved (S6).

3.2 Participant Recruitment

We sought to recruit participants from the population of
developers that have used (or even developed) SCA tools in
their projects in the past. Because this is a highly specialized
population and we wanted to gather insights about SCA usage
in a wide range of projects and companies, we used a range
of recruitment strategies to reach a wide and diverse pool of
participants. Specifically, we used the following strategies:

Online Communities: Various online open source and secu-
rity communities provide a forum for developers to engage in
discussion. These communities are often in Discord servers
and Slack channels. We searched the web for such communi-
ties with ‘security’, ‘sec’, or ‘open source’ in their names. We
selected 10 online communities with appropriate channels for
us to recruit participants and invited members to participate
in our interview study.

Freelance Platforms: Freelance platforms include a wide
variety of developers, which can broaden our participant popu-
lation. We recruited developers with SCA experience through
the Upwork7 platform. We posted our study details on the
platform and sent individual invites to freelancers that were a
good fit for our study in terms of experience with SCA tools.

Conference Participants: We also attended local developer
waterholes like a cybersecurity conference, InfoSeCon, and
a security community event, Software Supply Chain Com-
munity Day, organized by our university. We networked and
invited interested developers with SCA experience to partici-
pate in our interview study.

Snowball Sampling: We also asked interview participants
if they knew of anyone else that would be a good fit for our

7https://www.upwork.com/

Table 1: Participant Demographics
P No. Role† Company Type Years of Experience Country Codes Duration

P01 Software engineer Consulting firm 4 US 37 0:48:50

P02 Security engineer Fintech company 9 Germany 33 0:45:55

P03 Security engineer Survey company 14 US 47 0:52:11

P04* Software engineer Software vendor 21 US 34 0:48:13

P05 Security engineer Telecommmunications 5 Norway 31 0:45:01

P06 Security architect Healthcare 6 US 31 0:41:41

P07 Lead engineer Travel arrangements 15 US 29 0:44:57

P08* Director Consulting firm 15 The Netherlands 28 3:06:25‡

P09 Security architect Software vendor 35 US 48 1:00:16

P10 Software engineer Software vendor 11 US 33 0:55:15

P11 Director Electronics provider 30 US 42 0:56:25

P12* Freelancer Consulting 20 The Netherlands 22 0:49:46

P13 Security engineer Career platform 1 India 23 0:49:28

P14 Security manager IT solutions 5 Pakistan 35 0:53:02

P15 Security lead engineer Non-profit organization 25 Norway 25 0:44:38

P16* Security lead engineer Software vendor 7 US 31 0:52:04

P17 Security engineer Healthcare 3 US 28 0:35:58

P18 Security lead engineer Healthcare 15 US 30 0:41:51

P19 Security engineer Healthcare 11 US 29 0:37:16

P20 Security engineer Software vendor 4 US 21 0:34:52

*Participant has experience with developing SCA tool ‡Participant voluntarily exceeded planned interview time
†Participant roles binned to preserve privacy

study. If they recommended someone, we would reach out
and invite them to participate as well.

Of all the strategies, posting in online communities turned
out to be the most effective recruitment method. We recruited
9 participants through online posts. Recruitment through
freelance platforms, conferences, and community events also
turned out to be a good strategy. 6 participants were recruited
from the freelance platform, 4 of our participants were re-
cruited through connecting at conferences, and 1 was from
snowball sampling.

Selection criteria: To be eligible for our interviews, the par-
ticipants had to be at least 18 years of age and certify that they
have had experience with SCA tools. Before the interview,
we asked the participants to answer the following questions:
(1) What SCA tools have you used? (2) Could you briefly
describe your experience with SCA tools? The questions al-
lowed us to verify the participants have used SCA tools and
would be able to answer our interview questions. All partic-
ipants we interviewed had used SCA tools in the past and
provided sufficient insights so that we could base our analysis
on all 20 interviews.

Participants: Table 1 shows the demographic information
of our participants. Our participants come from a wide range
of industries, including but not limited to software vendors
and consulting firms. The participants also have experiences

that cover a broad spectrum, from one to thirty-five years of
experience. The majority of our participants are based in the
US, but there are also participants from Europe and Asia. As
compensation of sharing their experiences and valuable time
for 45 to 60 minutes, we offered each participant $60 or the
equivalent value in Amazon.com vouchers.

3.3 Interview Procedure

Our interview study follows the ethical principles outlined
in the Menlo report [7] and was approved by our university’s
IRB, which we discuss more in Ethics Considerations at the
end of this paper. Prior to the interview, we sent the consent
form to the participant to inform them of their rights, the goal
of our study, and how they would benefit. Our interviews were
conducted and recorded over zoom. The interviews generally
lasted around 45 to 60 minutes; see Table 1 for per-interview
duration. At the start of the interview, we reiterated the goal of
our research and gave participants the chance to ask questions
before we started the interview and recording. The record-
ings were later processed and analyzed, which we discuss in
the next section (Section 3.4). After the interview, we again
gave participants the opportunity to ask any questions and
encouraged them to reach out with any questions or concerns.

0 10 20

50

100

150

Number of interviews

N
um

be
ro

fs
ub

co
de

s

Figure 3: Count of subcodes in the codebook over number
of interviews. A flattening out curve in later stages indicates
reaching thematic saturation.

3.4 Coding and Analysis
To analyze our interviews, we applied a thematic analysis

approach [11] using hybrid (combination of inductive and
deductive) qualitative coding with two coders, a main coder
and an assisting coder, who both also performed the cognitive
walk-throughs mentioned in Section 3.3. The 20 interview
audio files averaged to 54 minutes 18 seconds for each inter-
view. The audio was transcribed into text transcripts using a
locally-run OpenAI whisper machine learning model to ensure
privacy of all participant recordings. Before starting coding,
the lead researcher checked and corrected all transcripts for
transcription mistakes.

We adopted a hybrid coding approach for our codebook de-
velopment. First, we formulated an initial codebook structure
based on our interview guide, with codebook sections corre-
sponding to sections in our interview guide. Based on the first
few interviews, our main coder did a first pass and added new
subcodes to the codebook. During coding, we modified the
initial codebook based on new themes and additional topics
that emerged during subsequent interviews. Both coders par-
ticipated in the cognitive walkthrough to ensure they have
sufficient understanding of SCA tools. Before coding the tran-
scripts, the two coders met to discuss the codebook to ensure
they have the same understanding of the codes. Both coders
iteratively and independently coded all interview transcripts.
After each coded transcript, coders exchanged coding results.

The main coder led conflict resolution, addressing straight-
forward differences (e.g., including an additional word) at
their discretion and adding second coder’s codes they agreed
with. Conflicts were minor and included missing subcodes,
thus they were easily resolved. This iterative process contin-
ued until all conflicts were resolved. As all conflicts were
resolved, we do not report intercoder agreement (IRR) [27].
Prior work has also adopted conflict resolution with similar
approaches [23], [51].

Figure 3 shows the total number of subcodes in our code-
book after each coding update. The total number of subcodes
increases quickly in our first few interviews and levels off in

0% 15% 30% 45% 55% 70% 85% 100%

None A few Some Many About
Half

Majority Most Almost
All All

0 1–2 3–6 7–8 9–11 12–13 14–17 18–19 20

Figure 4: Interview reporting ranges to help with readability
of results.

later interviews, indicating that we reached saturation [17]. In
total we assigned 637 codes resulting an average of 32 codes
per interview. We provide the final codebook in Appendix B
and discuss identified themes in Section 5.

3.5 Limitations
Our work includes a number of limitations typical for this

type of interview study and should be interpreted in context.
Generally, self-report studies may suffer from biases such as:
over- and under- reporting, sample bias, and social-desirability
bias. We tried to minimize these biases through removing
potential sources of bias in the interview procedure and by
asking non-leading questions. Our work is a convenience sam-
ple and may not fully represent the entire population of SCA
users, our study aimed to reach a broad and diverse sample
through a number of sampling channels. We conducted the
interviews in English, thus we cannot provide insight into
SCA practices in (entirely) non-English speaking regions.

4 Results

This section discusses the results from our interviews. We
divide our findings into the following subsections and discuss
the related observations: (1) SCA tool demographics, (2) tool
integration, (3) tool report, (4) developer opinions, and (5) im-
provements. The sections are largely based on the structure
of our interview guide (Figure 2). We replace the tool name
with a tool ID when a tool is mentioned in a quote to preserve
confidentiality of participants, we also indicate open source
tools by adding (OsT) after the tool ID in the quotes. We
included some participant quotes that relate to SCA develop-
ment experience as they provide additional insight into SCA
tools. To distinguish between between user and development
experience, quotes stemming from SCA development expe-
rience are labeled as participantID-dev. When reporting the
percentage of participants who expressed a related opinion,
we use specific phrases (e.g., “a few,” “many,” “most”) for
better flow and readability. The ranges we used for each of
the terms is shown in Figure 4.

4.1 SCA Demographics
The first main topic discussed in our interviews was the

use of SCA tools, including which SCA tool is used, reasons
for selecting the specific tool, and other related SCA use. We

Table 2: Tool Demographics
Type Times Mentioned Tool ID

Fully open source,
no vendor support

4 T03

2 T09

1 T21, T25, T26, T27

Open source,
with vendor support

2 T17

1 T23, T24, T29, T30

Open core,
with vendor support

10 T01

8 T05

3 T08, T14

2 T02, T06, T12, T16, T19

1 T04, T07, T10, T11, T13,
T15, T18, T20, T22, T28

provide Table 2 for the demographics of SCA tools used by
participants.

4.1.1 Reason for using SCA tools

Most (15) of the participants explicitly mentioned security
as the main reason for running SCA tools. When using SCA
tools for security, the main goal is to find and manage vulner-
abilities. Participants want to make sure that the open source
libraries they used do not include vulnerabilities. However,
security was not the only reason mentioned for using these
tools. About half (10) of the participants also explicitly men-
tioned compliance and licensing issues as a reason for using
SCA tools. Software has an impact on many areas. For ex-
ample, automobile software has to adhere to regulations that
govern the automotive industry. Hence the need for software
compliance.

Some (3) participants also mentioned less intuitive reasons
for using SCA tools, including merger acquisitions and export
relations. These use cases might be less obvious to a engineer,
but are also an important use for SCA tools.

“You have license compliance, security, export re-
strictions. AKA, I cannot have code from any of the
banned countries. [. . .] For export compliance, I
cannot have U.S. laws very strict on certain crypto-
graphic algorithms. [. . .] So, we’re buying a com-
pany or we’re being bought. And you basically have
to prove that your stack, if your stack is somewhat
decently built.” - P08

4.1.2 Selecting SCA tools

There were multiple factors that influence the selection of
SCA tools. A few participants said that their organization was
already using the same tool. Another factor mentioned by
some participants was ease for deploying the tool. Platforms
such as GitHub provide SCA features in their tool and allow
engineers to easily integrate it into their projects hosted on
the platform. “It’s much easier to have it all inbuilt in the

same platform rather than using external tools, which were
required to set up integrations and configurations.” (P05)

Challenges with tool deployment or tool reports led some
(5) participants to report switching tools. Participants reported
using one SCA tool initially, but encountered issues and chal-
lenges, for example: tool requirements were hard to fulfill
“The scan requirements to run T05 were very difficult to ful-
fill for some languages and for the varying build processes
that we used.” (P03) or they were not satisfied with the tool’s
results. “It was not uncommon that the database would be
reporting something wrong [. . .] it would match a component
to an incorrect component, or it would report a license. And
that product had not been built with DevOps and CI/CD in
mind.” (P09) This led them to switch to another SCA tool
that addresses their challenges. A few participants also men-
tioned using multiple tools, because the different features in
different tools complement each other. “I use combination of
tools actually, since some of those tools are free. I use majorly
T09 (OsT) and second is T12 for getting results instantly. [. . .]
T09 (OsT) is very handy for generating reports.” (P13)

Summary: SCA Demographics. The main reason for using
SCA tools are vulnerability detection and license man-
agement. Factors impacting the selection of the tool vary
among participants, including ease of deployment and re-
sult accuracy. It was also common to switch tools after
encountering challenges with the first tool.

4.2 SCA Integration
The next main topic in our interviews was SCA integra-

tion. We asked participants how they ran SCA within their
organizations. This was key to understanding the entire SCA
process in development pipelines and provides better context
for understanding challenges.

4.2.1 Input to SCA analyses

SCA tools use three major types of input: source code,
binaries, and software metadata. Different types of analyses
tailor to users with different use cases and priorities.
Source code and metadata analysis: Source code analysis
was the most common; however one concern brought up by
some participants was the leaking of intellectual property, i.e.,
the source code. “We didn’t use the cloud version because we
didn’t want the code to go outside.” (P05) SCA tools that only
analyze metadata present less risk and can address concerns
about leaking intellectual property. “One of the benefits of our
product is that we only look at manifest, because giving your
code base up to a third party tool is kind of risky sometimes.”
(P04)
Binary analysis: With source code analysis, the tool is able
to identify software components from manifest files or meta-
data. This information is not available to binary SCA analysis.

Therefore, binary SCA analysis must rely on techniques such
as fingerprinting to identify components. Some (3) partici-
pants shared frustrations with identifying components and
versions in binaries. “So a lot of the tools are very good at
saying open source code is present. So like identifying that
OpenSSL, just to pick a random example, is in the code, but
they’re less good at identifying a specific version of OpenSSL.”
(P11)

With fingerprinting, if a single line is changed in the file,
the fingerprint is completely different. “If you change one
single line of code [. . .] you might get a different binary [. . .]
Therefore, you will not have a match.” (P08) Determining
what information to focus on, whether to fingerprint an entire
file or only a function can be a challenge for binary analysis.
Furthermore, tools may not be focusing on the important
information within the binary.

“They’re indexing too much. They’re not looking at
what kind of files are we actually looking at. A good
example is when you’re scanning something like a
.NET project. [. . .] you have lots of generated code
like interfaces for the user interface. And that’s just
a lot of generated code where the tools that create
the user interface, when you generate them, they
just output a lot of boilerplate.” - P12-dev

4.2.2 SCA in the software development lifecycle

SCA can be integrated at various stages in the develop-
ment lifecycle. We discuss how SCA tools are integrated both
within and outside of CI/CD pipelines.
SCA inside CI/CD pipelines: Most (16) of the participants
shared that they integrated the SCA scan into their CI/CD
pipelines. This could be in the form of GitHub actions run
during merge requests or pull requests. It could also be other
custom pipelines used by organizations, e.g., Jenkins. The ma-
jority of (13) participants mentioned the SCA is triggered by
code commits, merge requests, or pull requests. Participants
also pointed out, as the SCA tool is integrated into the build
pipeline, it can disrupt software deployment.

“There is a build pipeline that takes this code after
the code is merged to the GitHub repository, per-
forms different checks, including security checks,
and then creates a build and optionally deploys
it to the target platform or makes it available for
users. [. . .] if there is a security issue, the SCA tool
may say, oh, you have an issue, please fix it and
rerun the pipeline again.” - P15

Some participants mentioned other ways an SCA tool could
be integrated. Some vendors allow users to execute an API
call to the vendor’s backend to run an SCA scan. Other par-
ticipants also shared using the SCA tool as a standalone ap-
plication.
SCA outside CI/CD pipelines: Similar to unit tests, SCA
scans are run frequently in the build pipeline. However, SCA

are also run before and after build and deployment. Some
SCA vendors allow users to directly run the SCA feature in
their integrated development environment, for example as a
VS Code extension. A participant pointed out that integrating
SCA in multiple stages and early in the development cycle
can be beneficial. “We make T05 available to our development
team so they can use it as they need to throughout develop-
ment.” (P11) Finding vulnerabilities early on was beneficial
for them as vulnerabilities can add up during their multiple
month development cycles. “Our development cycles can last
months and we don’t want to wait until the last minute to
figure out, hey, we need to change major components.” (P11)

For more complete monitoring, deployed applications also
need to run SCA frequently due to new vulnerabilities being
found. SCA results can change after the application has fin-
ished development, as vulnerability results can be updated,
further adding to the need to run SCA frequently. “Sometimes
when you go to the NVD, you’ll see something say under-
going reanalysis.” (P09) One participant reported that their
customer would run an SCA scan on the application after
deployment and receive different results “I had a customer
reported thing in an older version of one of our pieces of
software” (P09) This case required back and forth with the
customer to resolve the issue.

4.2.3 Challenges when integrating SCA

Many challenges emerged when we discussed integration
of SCA with participants.
Challenges with different ecosystems: Some (6) partici-
pants pointed out that SCA tools often perform better for
some ecosystems than others. Strengths and weaknesses are
different for each tool. “Both T05 and T06 were pretty good
at certain languages. I think T05 was really good at Java,
and probably Python. [. . .] they were both pretty bad at Go.”
(P03) Participants sometimes had to work around the weak-
nesses or select another tool. “We had to build a lot of, kind
of additional tooling to help remove false positives for Go
projects.” (P03)

One of the participants with SCA development experience
offered some insight into the reasons for this. “All the package
managers are different. So you have to have exceptions for
each one and you have to figure out what those exceptions
are.” (P04-dev) Ruby has a lock file that locks the library
versions. Python can be trickier because there are different
lock file types and multiple ways of resolving dependencies.
JavaScript has the issue of having too many layers of depen-
dencies, cycle may be present too. Maven does not have lock
files. “It’s an older package manager. They have the pom file,
which is your main manifest. And then you can have parent
poms or other types of poms, and you have to resolve those.
[. . .] And then there’s also interpolation. So you might have
manifests with interpolated versions and you have to figure
out what that is.” (P04-dev) Gradle does not have a static

manifest so it could be very difficult to resolve dependencies.
“They’re actually scripts. You could have like a production
and a test branch in your Gradle script, but you could also
have custom scopes [. . .] they can be nested in folders and
it’s very complex.” (P04-dev) On top of all the complexities,
SCA maintainers also have to keep track of changes in the
ecosystems or package managers.

Unsupported scripts: Some participants mentioned chal-
lenges with scripts not supported by the SCA scan. These
included custom build scripts in the software or legacy pro-
gramming languages, such as Lisp or Fortran. “There is some
software written in these languages as well. Or some exotic
languages maybe. And there is simply not that much knowl-
edge and expertise to create a product that they can analyze
and successfully.” (P15) When a file format is not supported
by an SCA scan, users have to find other ways to run the scan.
“We need to go and either pre-process things ourselves. We
need to work with the supplier to add support for new file
formats.” (P11)

SCA halting the development cycle: Integrating SCA scans
into the build pipeline could act as a double edged sword.
Some (6) participants mentioned SCA scans can bring soft-
ware development to a halt. Participants mentioned SCA alerts
failing builds or the the SCA tool having issues itself. Allow-
ing SCA tools to fail builds means the development cycle is
halted until the issue is fixed. “They slow down velocity [. . .]
like everything just comes to like a screeching halt until we,
until we fix it. We can’t like merge anything and we can’t run
tests and stuff like that.” (P07) One participant shared that
due to these failed builds, they transitioned to running the
SCA scan every week. “Previously, we had it set up with a
custom action that like, when you push the code, it would do
the scanning. Now we have like scheduled it. It’s going to
run every week automatically once to scan everything. We
don’t have it on each push anymore [. . .] It doesn’t become a
blocker.” (P05)

Failed builds slows down the development process because
engineers have to stop development to figure out why the
builds are failing.

“What happens more than blocking, like actually
blocking builds is the sense that it’s blocking work.
Where developers will see a failed check. Techni-
cally they can still merge it if they want. [. . .] they
try to do the right thing or understand why some-
thing’s failing, and so it causes at least a detour
where they have to like reach out, you know, in our
like Slack. [. . .] So you get a temporary implicit
block. Um, usually not for super long, but enough
that, you know, for every developer that’s kind of
annoying.” - P16

Using multiple tools: Some participants shared that they use
multiple tools to gather a more holistic picture. For one of the
participants, a combination of different tool results provides a

more holistic view of the application. The participant has soft-
ware in containers, and software in the container is built from
microservices. They have SCA scans at both the microservice
and container level. The different results complement each
other because they provide results at different levels vertically
along the development lifecycle.

“They definitely complement each other. The mi-
croservice level is for, we kind of think of things
as first degree dependencies or third degree depen-
dencies. If my microservice is pulling this in and
I’m not getting it from platform, then I’m the one
who’s responsible for monitoring its security. And
so for that reason, we need to have that microser-
vice view.” - P09

However, another participant pointed out that integrating
multiple tools into their software pipeline can be a huge chal-
lenge. Differences in tools require additional wrappers or
scripts to connect the tools, and with it comes additional effort
required for the maintenance of the entire pipeline. “Integra-
tion is near impossible. [. . .] They pretty much built every
SCA tool at the time of the market and they spent millions to
build a Frankenstein monster to connect all of those SCAs
together.” (P08) Even with integration, the upkeep of the tool
could be a huge cost.

“SCA, what it’s detecting is the ecosystem, the Java
ecosystem, the Node ecosystem, those continuously
change. [. . .] new build tools could vary. And there
are also multiple new build tools coming on the
market. If your SCA tool doesn’t support those build
tools, you’re screwed. So, the upkeep of that tool
is basically, it’s not sustainable or maintainable.”
- P08

Summary: SCA Integration. SCA tools are most often
integrated into build pipelines and run on pull requests.
While CI integration automates SCA scans and catches
vulnerabilities, it can also block development pipelines.
Huge efforts are needed if trying to integrate multiple SCA
tools together.

4.3 SCA Tool Report
The third main topic discussed in our interviews relates to

actions after running the SCA scan. We wanted to understand
how the outputs are interpreted and processed, and further,
how the vulnerability alerts are resolved. In this subsection,
we discuss: (1) how SCA tool outputs are interpreted, (2) how
vulnerabilities are fixed, (3) false positives, and (4) tooling
around the SCA outputs.

4.3.1 Interpreting vulnerability reports

The majority of of our participants have a role title related
to security. Part of the workload for these participants was
to focus on the SCA process and outputs. These security

engineers reach out to the engineers who wrote the code
to discuss a solution for vulnerability alerts. “Tickets” are
commonly used by security engineers to relay this information
to engineers. “I will look at the findings from the SCA tool
and triage them and determine which ones need to be tickets
that would then go to the engineering team for remediation.”
(P06)

The number of SCA alerts can initially be overwhelming.
Most (15) participants mentioned prioritizing alerts based on
severity. Severity is either CVSS score or a metric specific to
the SCA tool. Other mentioned prioritization methods include:
(a) the time required to fix the vulnerability and (b) whether
the application is of importance. After initial prioritization,
participants evaluate the risk and impact of the vulnerability.
Various factors come into play, including: (a) whether the
vulnerability is exploitable and (b) whether the application is
external facing or behind a firewall. This evaluation process
requires more context and thus security engineers often have
to review each vulnerability manually.

“Ideally as a security team, we know what the prod-
uct is. So you’d be able to tell, like, if you see a
UI, you know, hopefully you might be able to tell
like which feature it might be in [. . .] Then maybe,
you know, which feature that would go in and that
would help you determine, you know, how impactful
that specific vulnerability might be.” - P06

Many (8) participants explicitly expressed the need for ad-
ditional context in vulnerability alerts. One participant gave
an example of how additional context greatly helps with de-
termining how to resolve vulnerability alerts from the tool.
“After getting all the vulnerabilities. [. . .] you will get one
alert from SCA tool and one from SAST, one more from AWS
or Infraside. This tool will combine three of those outputs and
tell you if these three can be combined, become exploitable
thing or not.” (P13)

One participant noted that sometimes not being able to
explain the results from the tool can be a challenge. “I really
want to verify because if, when I’m talking to lawyers, I want
to be able to explain like, this decision was made and this is
why.” (P12)

4.3.2 Fixing vulnerabilities

Updating a library to a newer, non-vulnerable version is the
most common method of resolving a vulnerability, as men-
tioned by the majority of (13) participants. However, partici-
pants also run into cases where updating the library can cause
compatibility issues within their application. Many (8) of the
participants reported that sometimes updating dependencies
would introduce breaking changes into the application. “Let’s
just bump it up. So it goes away, and I hope that nothing
happens. But there is on occasion, that you would introduce a
breaking change if you were to up the version.” (P06) When
a simple solution does not exist, more investigation is needed

to come up with a fix for the vulnerability. Sometimes, it re-
quired a great amount of additional effort, as explained by
one of the participants. “It was going to be very, very time
intensive to do a rip and replace. So instead, we forked it and
we took out the vulnerable pieces. So our fork didn’t have
the vulnerability. [. . .] we took that class out or we took that
method out.” (P09)
Exceptions: Some (4) participants explicitly mentioned that
they had an exceptions process in place for resolving vulner-
abilities. In the exceptions process, the engineer manually
reviews the vulnerability and provide reasons why the vulner-
ability does not need to be removed. Examples of an excep-
tions include: (a) the vulnerability does not impact application
(considered a false positive) and (b) the business risk from
removing the vulnerability does not outweigh the security risk
it brings.

“This thing needs to ship or we don’t make money.
Can we get a security exception? [. . .] you have
to weigh what’s the security risk versus what’s the
business risk. And at some point, it’s a choice be-
tween the business going belly up and potentially
getting breached. That’s a call that upper manage-
ment has to make.” - P10

Isolating vulnerable components: Participants also men-
tioned isolating the vulnerable component. Oftentimes, re-
moving network connections to a component eliminates risk,
because no external input can exploit the vulnerability. “Most
security vulnerabilities, the risk of that can be negated if you
basically just make sure that it doesn’t have a connection to
the internet.” (P08) By isolating the component, the risk of
the vulnerability reduces to an amount that is small enough to
be accepted. This is not the ideal solution but can be used as
a last resort. “There have been cases where we might accept
risk of a vulnerability, but only for a certain amount of time.
[. . .] and what you would do is you would do a limited release,
but you would say, okay, you need to add these firewall rules
so this vulnerability can’t be exploited.” (P09) One participant
explains that there are times when a non-vulnerable alterna-
tive is not available, thus the only choice is to make sure the
component is not exposed. “We’ve got some suppliers that
supply industry. They are the only choice through the dom-
inant force. It’s basically you’ve got a choice of either you
work with them or you don’t have a product in that area.”
(P11)

4.3.3 False positives

In our study, we consider a false positive to be an SCA
vulnerability alert where the vulnerability does not impact the
software. False positives are a big concern for SCA users, a
topic discussed by all except one participant (15). One par-
ticipant explicitly stated false positives as the reason they
switched from on SCA tool to another. “[T03 (OsT)] throws
a lot of false positives. That’s the main reason that we adopted

the commercial tool” (P02) The reasons for false positives
differ. One reason mentioned was test or build dependencies.
“Some of it was just like the tool couldn’t ignore test depen-
dencies.” (P03)

While impact could be defined differently for different
engineers, almost all the participants agree that a lot of the
SCA vulnerability alerts do not pose a direct threat or impact
to their application. “I do think that many SCA findings do not
present an actual risk to an application.” (P06) Determining
the actual impact of the vulnerability requires experience and
knowledge about the vulnerability and the application itself.
This process is not easily automated and requires manual
effort. Often, the security team and the engineering team
need to work together to determine whether an alert is a false
positive. “[security team] they’re the ones responsible for like
investigating a CVE [. . .] And working with the development
teams to answer: Is this a false positive? Is it a true positive?”
(P10)

An approach to combat false positives mentioned by one of
the participants was to include library maintainer insight into
the vulnerability alerts, as library maintainers are the ones
most familiar with the code in the library. “Those maintainers
give reports about CVEs on their projects. So they, the main-
tainer can tell [. . .] that a certain CVE is a false positive. And
so we can surface that to our customers.” (P04)

4.3.4 Tooling and automation around SCA output

As discussed in Section 4.3.1, additional manual effort is of-
ten needed after receiving SCA reports. Some (4) participants
shared how they built automation and tooling around the SCA
tool to reduce the effort needed to review vulnerabilities. One
of the main advantages mentioned was the tooling reduced
efforts to fix the same issues over and over. The tooling would
be able to resolve previously fixed vulnerabilities. If a single
vulnerability affected multiple applications, the tooling would
also link all the results to a single result, which eliminates the
need to fix duplicate issues.

“With earlier tooling, each software component that
used a fundamental library like Spring Framework
would have had an individual ticket for a criti-
cal vulnerability, but because they ingested it from
a base image, absent forking, they could not di-
rectly remediate the issue themselves. We [. . .] have
[evolved] the automation [to] find the root cause
[. . .], which component or project is initially bring-
ing this in. And then, everybody who’s getting it
transitively, they still have a ticket, but their ticket
will link to the root cause.” - P09

The tooling sometimes also learns from past feedback and
experiences from the user and applies that on newly found vul-
nerabilities. This capability eliminates the need for engineers
to re-evaluate the same issues.

“We build tooling around it that interprets the results
[. . .] lets us mark it in version 1 that says this isn’t

applicable because it doesn’t apply to our architec-
ture. And then on version 2 of the product, when
we scan it with T05 and get the same finding, the
past triage [. . .] is automatically applied to it [. . .]
it basically carries forward the learnings and the
scorings from past investigations into vulnerabil-
ities and applies those to the same thing for the
same code base for later versions of it.” - P11

Unknowns in how an SCA tool worked also presented
challenges for users. For example, debugging issues with a
tool requires knowledge of how a tool works. Without an
understanding of how SCA tools run, users are not able to fix
issues encountered when using the tool. A few participants
discussed unknowns in the tool as a challenge. “There were a
lot of unknowns in how the product worked. And so we would
use it a certain way and then it might crash, or it couldn’t
handle the number of scans.” (P03)
Different approaches between small and large organiza-
tions: We observed different approaches of interpreting and
acting on SCA results between small and large organizations.
Larger organizations have a larger workforce, thus they can
allocate more effort into specifically building and maintaining
a tool around the SCA process that tailors to their pipelines.
“My team develops the security automation tools. And then
we have a security team who’s a little bit more of the higher
level of security. And they’re the ones responsible for like in-
vestigating a CVE.” (P10) Smaller companies are not able to
do this and the developers often have to take care of the SCA
process from start to finish. There is also less testing in place
to catch issues with updating library versions. “I think many
companies don’t have that maturity in their end in testing.
And so, you know, this, it’s risky to say, okay, let’s bump up
this JavaScript library up to here and hope everything works
out.” (P06)

Summary: SCA Reports. False positives from the tools are
common, and users are not able to determine the impact
of the alert solely from the tool reports. Manual effort is
needed to gather additional context relating to the vulner-
ability and assess the impact of it. In an effort to reduce
manual labor, organizations are also spending additional
effort developing tooling around SCA tools to manage the
large number of vulnerability alerts. Sometimes fixing the
alerts is simple as updating the library version. Other times,
additional effort is required to propose a solution that does
not break the application and fixes the vulnerability. Re-
solving vulnerabilities differs case by case.

4.4 Developer Opinions
In our interviews, we also gave participants the opportunity

to voice their opinions about SCA tools and vulnerability data
in general. In this subsection, we discuss several opinions
from participants.

False sense of security: Some (3) participants reported that
SCA can only identify known vulnerabilities and can give
you a false sense of security. Running an SCA scan can give
the impression that the tool will report all vulnerabilities.
However, there could be existing vulnerabilities that have yet
to be reported publicly, those vulnerabilities can pose a huge
risk to organizations. “SCA scans are great at pointing out
vulnerabilities that people have already found, but they’re
not going to help you with vulnerabilities that people haven’t
found. [. . .] But it’s the threats that you can’t see that will kill
you.” (P10)

CVE data: Some (3) participants expressed their opinions
on how CVEs are reported and managed. They expressed
concern over the large number of CVEs and the need for better
CVE standards. As discussed in Section 2, CVE data does not
have specific requirements other than the ID, description, and
references. “There are just so many CVEs being submitted all
at once that there’s just no way to properly govern them all.
[. . .] I’m exaggerating, but you can submit like a children’s
novel and get published as a CVE. I think that the standard for
submitting a CVE can definitely go up, can definitely improve.”
(P06) A participant pointed out that the metrics used to convey
vulnerability severity can be misleading. “[CVSS score] is a
big lie, in my opinion. CVSS scores. The people who report it
to NVD, they try to inflate it most of the time. So it’s not at all
helpful.” (P13)

4.5 Improvements for SCA

In the last topic of our interviews, we asked participants
what kind of improvements they would like to see.

Context: The most commonly discussed improvement was
additional context for more actionable actions for SCA users,
as discussed in Section 4.3.1. One participant proposed an ap-
proach that combines SCA, SAST, and infrastructure context.
This approach greatly helped them with resolving SCA alerts.
“SCA itself is not that useful since we do not have full picture.
So SCA combined with SAST is very helpful. And if you add
your infrastructure configuration context also, it becomes a
lot more helpful to prioritize things.” (P13) Some participants
also pointed out that LLMs could help by providing more
information on vulnerabilities.

Reachability: Reachability was another concept brought up
by about half (9) of participants. “A lot of these findings that
come from these SCA tools, are of, you know, functions that
don’t ever get called. And so therefore they don’t present any
risk, confirmed risk to the application.” (P06) In the case of
vulnerabilities and SCA, reachability is often used to analyze
whether a vulnerable function is called from the main appli-
cation. It can help by narrowing down vulnerability alerts to
the functions that are actually called. It is a fairly new ap-
proach adopted by some SCA tools, but some (4) participants
believe it can greatly improve to reduce efforts needed to man-

age alerts from SCA tools. “I think the reachability analysis
would be the biggest game changer that will come to SCA in
the next five years.” (P06)
User Feedback: Another potential improvement brought up
by some (3) participants was some kind of feature in the tool
that would receive user input and improve future results based
on that. The motivation comes from tool results being inaccu-
rate or irrelevant sometimes, and the user may want to override
results or teach the tool to make different determinations for
future results. This concept is similar to the motivation for
the additional tooling around an SCA tool discussed in Sec-
tion 4.3.4. “Having more intelligence to them where you can
better train them to say, hey, this isn’t an issue for us in this
context. So don’t flag this as an issue next time around. So
basically eliminate the need for some of the custom tooling
we’ve written.” (P11)
Better License Detection: SCA relating to managing licenses
was brought up by the majority of participants, as discussed
in Section 4.1. Some (3) participants explicitly expressed
opinions for better detection and management of licenses. One
participant provided some insight as to why license detection
can be a challenge. “For many licenses, there is a standard
way to basically say this file is under this particular license.
But there are lots of stubborn developers who are thinking
like, no, I’m going to do it in a different way because that’s
better. And then for the scanning tools, basically it causes
issues.” (P12)
New Metrics: Lastly, A few (2) participants expressed the
need for the tools to be more proactive to adapting new metrics
and having more support from the tool or the community
around the tool.

Summary: Improvements. Information in SCA alerts are
too generic for users and lack context. Participants wanted
more specific information on actions they can take and
insights into the impact of the vulnerability on their appli-
cation.

5 Discussion

In this section, we summarize our findings by (1) presenting
Figure 5, a revised version of Figure 1 that includes our find-
ings on how SCA is integrated into development pipelines and
(2) answering our research questions and discuss how each
finding relate to our main finding: context matters. More
context is needed throughout the SCA process to stream-
line vulnerability management. We identified three emergent
themes through which context matters:

• T1: More information is needed to evaluate the risk and
impact of the vulnerability alert.

• T2: When and how the SCA scan runs in the develop-
ment cycle matter.

• T3: Integration of SCA and communication of the results

Figure 5: SCA integration in the software lifecycle includ-
ing our findings on how SCA is integrated into development
pipelines.

can generate overhead if there is not enough context
present.

While the SCA industry is beginning to promote reachabil-
ity analysis to determine if a vulnerability impacts a project
(a form of context), our study reveals the need to consider
context more broadly. In the following we detail how the
identified themes related to our findings.

Answering RQ1: How do users interact with SCA tools?
Participants mentioned using SCA tools as standalone ap-
plications or integrating them into CI/CD pipelines, such as
through GitHub Actions. After receiving vulnerability alerts
from an SCA tool, engineers can resolve it themselves or for-
ward the issue to the responsible engineer. Security engineers
often need to work together with software engineers who have
a better understanding of the code and come up with a solu-
tion together. Security engineers lack the context software
engineers have of the code and therefore need to coordinate
with them (T3). Participants reported going through the alerts
manually to determine how to resolve them (T1).

5.1 Challenges with SCA Deployment

Answering RQ2: What are the challenges when deploying
SCA tools? Many challenges emerged when we talked to
participants. We grouped the challenges into corresponding
themes and discuss them individually.

Tradeoffs that come with integrating SCA in CI/CD (T2):
The when and how of an SCA process should be customized
based on the team’s workflow and priorities. Running an SCA
tool as-is without consideration of how it fits into pipelines
presents challenges. Integration of SCA tools through CI/CD
pipelines automates the scans and takes the burden off en-
gineers. However, SCA scans can halt build pipelines when
they are used as gates to prevent insecure code from being
merged into codebases. This can be a blocker in unintended
situations; a merge request blocked due to a vulnerable library
can delay the development of a new feature, even when that
library is completely unrelated to the feature. In Section 4.2.2,

we discussed an example where the team opted to run SCA
scans themselves every week instead of integrating it in the
CI pipeline.

SCA scans need to be run frequently (T2): Unlike SAST
tools that return the same results for the same codebase on re-
runs, SCA scan results can change overtime due to the discov-
ery of new vulnerabilities in components while the codebases
remains the same. Thus, SCA needs to be run frequently, even
after software has been deployed. Running scans frequently
also prevents a large amount of alerts overwhelming engineers
with each scan.

Balancing SCA in CI/CD (T2): Based on our interviews, a
common way to run SCA scans frequently is to integrate them
into CI/CD pipelines. However, if not configured correctly,
SCA scans can halt development pipelines. SCA alerts can
be noisy, thus build pipelines would halt frequently if they
are blocked on all SCA alerts. The balance between running
SCA scans and keeping the development pipeline flowing
is a challenge, similar to the tension between security and
usability. Users should consider (1) the type of vulnerabilities
to prioritize and only blocking builds on those and (2) the
additional effort to fix an alert blocking the pipeline. The
balance of both ensures a secure build and a usable SCA
integration.

Overhead in the SCA process (T3): Ideally, the SCA process
is fully automated to facilitate continuous scanning runs. Un-
fortunately, SCA tools sometimes run into edge cases that the
tool cannot handle, e.g., unsupported file formats and different
ways to import libraries. To resolve the edge cases, engineers
need to put in extra effort. The overhead increases exponen-
tially when up-scaling SCA process in large codebases or
organizations. Related, different teams may use different soft-
ware and technologies, making integrating and scaling SCA
processes across multiple teams a challenge: “I know for cer-
tain of their product teams, they use six or seven different
SCA tools. [. . .] Every team has a different workflow, different
configuration. Now, do this at scale.” (P08)

5.2 Acting on SCA Results

Answering RQ3: What are the challenges when acting on
SCA results? From our interviews, we observed that some
organizations have automated tooling present to assist with
managing vulnerability alerts, some do not. Regardless, vul-
nerability alerts require manual review to determine risk and
impact to the application (T1). Various approaches can be
taken to resolve the alerts, the most common and easy way
is to update the library to a newer or non-vulnerable ver-
sion. However, sometimes updating library versions introduce
breaking changes into the application. If there is no easy way
to update the library to a non-vulnerable version, exceptions
such as accepting security risk or isolating the vulnerable
component to mitigate risk are made.

More context needed for vulnerability alerts (T1): A com-
mon complaint from participants was the lack of context
within vulnerability alerts. SCA tools output all vulnerabili-
ties found in libraries used in the application, regardless of
how the library is used. Participants mentioned that the vul-
nerability often does not affect their use case. Furthermore,
the alerts are often generic and do not provide enough infor-
mation on how to resolve the vulnerability. Users often have
to find more information on the vulnerability to determine
how to resolve it.

Fixing SCA alerts at scale (T3): The number of SCA alerts
at a large organization overwhelms security engineers. As dis-
cussed in Section 4.3.4, large organizations invest significant
effort into building automated tooling around the SCA tool
outputs in order to manage them efficiently. Multiple SCA
alerts may be related to the same root cause. Rather than each
engineer resolving the alert individually, the tooling elimi-
nates duplicate efforts. The automated tooling relays context
along the SCA process, but at a large maintenance cost for
organizations. Challenges also arise between software ven-
dors, customers, or auditors when the different parties receive
different SCA results: “If your customer or an auditor is scan-
ning with a different tool, they might get different results. And
the results might be not just the library of the CVE, but the
severity can differ.” (P09)

5.3 Improvements for the SCA process

Answering RQ4: How can the SCA process be improved?
Based on previous discussion and results, we suggest several
approaches for stakeholders to address the lack of context
throughout the SCA process.

Tool users: For SCA users, finding a tool that fits well into
the engineering teams’ software pipeline is beneficial (T2).
No tool is perfect, and understanding the strengths and weak-
nesses of each tool helps with tool selection. As discussed in
Section 4.2.3, SCA tools can perform differently for different
languages. Some tools require access to source code or bi-
naries, others only require metadata; this could be a concern
for companies that value the confidentiality of their source
code. Different tools may also have different integration meth-
ods into the software development pipeline. These should be
taken into account when selecting SCA tools. Furthermore,
not everything in the SCA process is currently automatable.
Resolving vulnerabilities often requires multiple teams to
work together. Understanding the tool and having clear com-
munication between engineering teams will make the process
smoother (T3).
Tool vendors: For SCA vendors, more information about
vulnerability alerts is greatly needed (T1). SCA users often
require in extra manual effort to determine how to resolve the
alerts. Providing less generic information, and more informa-
tion specific to the users’ use case can reduce this effort, this

could include the following information:
• Function reachability: Considering how the vulnerable

dependency is used within the application and whether
the vulnerable function is reachable through call graphs
would help filter out unreachable vulnerabilities and re-
duce false positives, as discussed in Section 4.5.

• Infrastructure: Different applications are set up differ-
ently. Understanding the infrastructure underlying the
application and how the application interacts with users
and other applications will help identify how data is
passed through the application, addressing Section 4.3.1
and 4.5.

• Network configurations: As discussed in Section 4.3.1
and 4.3.2, vulnerabilities are often exploited through un-
trusted data input. Some applications sit behind a firewall
that protects it from untrusted data, hence the applica-
tion would not be vulnerable to attacks through untrusted
input data.

• Exploitability: Combining the points listed above with
SAST capabilities and providing information such as
data flow analysis or sanitization will provide developers
with a bigger picture (Section 4.3.1), with which they
can make better decisions to determine the exploitabil-
ity of a vulnerability. SCA vendors could also consider
adding LLM inference to combine all the information
gathered to provide SCA users with a clear suggestion
on resolving the vulnerability.

Furthermore, participants also desired a feature that allows
users to train the tool or provide feedback on results. SCA
tools can also be improved to address process overhead (T3).
For example, participants created custom tooling around SCA
tools. Vendors should consider how to make SCA platforms
more customizable to different pipelines.
Researchers: We encourage researchers to investigate tech-
niques to (a) provide more context about the vulnerability and
its impact and (b) reduce false positives (T1). As we discussed
in Section 4.5, participants mentioned alerts from SCA tools
being too generic. Techniques such as debloating and reacha-
bility have potential to identify if a vulnerability impacts an
application. Research on how to assist SCA tool vendors in
providing better quality data for the four types of information
mentioned can help provide better context. Research on how
to use LLMs to reduce manual effort of interpreting SCA
results would be beneficial. LLMs could be used to (1) com-
bine the four types of information to determine vulnerability
impact and (2) provide users with fix suggestions.

6 Conclusion

To understand the use of SCA tools and challenges that
come with it, we conducted 20 semi-structured interviews
with industry professionals with SCA experience. The inter-
views uncovered challenges with integrating the tools and

challenges with resolving the vulnerabilities outputted by the
tools. We found that throughout the SCA process context
matters and that the lack of it creates challenges for the users.

Acknowledgments

This work was supported in part by the National Science
Foundation grant CNS-2207008. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the funding agencies. We thank our participants
for participating in the study, sharing their experiences, and
providing valuable input. We also thank all the anonymous
reviewers and shepherds for their thoughtful comments and
feedback.

Ethics Considerations

We structured our interview study to follow the ethical
principles outlined in the Menlo report. Prior to conduct-
ing interviews, we obtained approval for our study setup by
our university’s Institutional Review Board (IRB). We pro-
vided all invited participants with detailed information on
our study’s goals, methods, and data handling strategies. We
sent out a consent form to inform each participant of study
details, how their data will be handled, and their freedom to
skip any question or withdraw from the interview at any time.
Before each interview, we obtained informed consent from
each participant and encouraged invited participants to bring
up any questions or concerns they have and addressed their
concerns.

All data was collected and stored according to our IRB
guidelines and GDPR. All authors went through IRB training
for data handling. Participant data, interview recordings and
transcripts were stored locally in an encrypted volume. Audio
recordings of the interviews were turned into pseudonymized
/ redacted transcripts using a locally-run OpenAI whisper
machine learning model and recordings were deleted after
transcription.

We informed the participants of the risk in participating in
our research in our consent form. The primary risk in our study
is reputational damage to the participant or their organization
when describing their security practices. To prevent damage,
we stored identifiable data in encrypted volumes and removed
all identifiers in publicly available data. As compensation
for sharing their experiences and valuable time for 45 to 60
minutes, we offered each participant $60 or the equivalent
value in Amazon.com vouchers. The benefit of our study is
motivation for stakeholders to improve the SCA process. We
weighed the risks and benefits of our study and believe that
the benefits outweighed the risks.

Open Science

We acknowledge the USENIX Security open science policy.
The research artifacts associated with this study are:

• Raw interview transcripts

• Anonymized interview transcripts

• Interview guide

• Codebook

Things we have shared: The interview guide is an important
part of the design of our interview study, which is included in
Appendix A. We also share the codebook, with codes and ex-
ample subcodes, in Appendix B. We discuss identified major
themes in Section 5. We have also shared an online replica-
tion package including (1) the consent form, (2) the interview
guide, and (3) the codebook. The replication package can be
found at https://doi.org/10.5281/zenodo.15537121.
Things we cannot share: We cannot share recordings as
these were destroyed after transcription. For the privacy of the
participants and compliance with IRB, we cannot share raw
transcripts. We are also unwilling to share the anonymized
transcripts as there is a high risk of de-anonymizing the partic-
ipants given the large amount of discussion in the interviews.

References

[1] 2024 Open Source Security and Risk Analysis Re-
port, https://www.blackduck.com/resources/
analyst-reports/open-source-security-risk-
analysis.html, 2024.

[2] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical
analysis of security vulnerabilities in python pack-
ages,” Empirical Software Engineering, vol. 28, no. 3,
p. 59, 2023.

[3] A. S. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni,
““False negative - that one is going to kill you”: Under-
standing Industry Perspectives of Static Analysis based
Security Testing,” 2024 IEEE Symposium on Security
and Privacy, 2024.

[4] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mo-
haisen, “Cleaning the NVD: Comprehensive quality
assessment, improvements, and analyses,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 19,
no. 6, pp. 4255–4269, 2021.

[5] H. Assal and S. Chiasson, “Security in the software
development lifecycle,” in Fourteenth symposium on
usable privacy and security (SOUPS 2018), 2018,
pp. 281–296.

[6] H. Assal and S. Chiasson, “’Think secure from the
beginning’ A Survey with Software Developers,” in
Proceedings of the 2019 CHI conference on human
factors in computing systems, 2019, pp. 1–13.

https://doi.org/10.5281/zenodo.15537121
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html

[7] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan,
“The Menlo Report,” IEEE Security & Privacy, vol. 10,
no. 2, pp. 71–75, 2012.

[8] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber,
L. A. Takayama, and M. Prabaker, “Field studies of
computer system administrators: analysis of system
management tools and practices,” in Proceedings of
the 2004 ACM conference on Computer supported co-
operative work, 2004, pp. 388–395.

[9] G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes:
automated collection of vulnerabilities and their fixes
from open-source software,” in Proceedings of the 17th
International Conference on Predictive Models and
Data Analytics in Software Engineering, 2021, pp. 30–
39.

[10] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung,
“When and how to make breaking changes: Policies
and practices in 18 open source software ecosys-
tems,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 30, no. 4, pp. 1–56,
2021.

[11] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative research in psychology, vol. 3,
no. 2, pp. 77–101, 2006.

[12] CVE Metrics, https : / / www . cve . org / about /
Metrics.

[13] A. Dann, H. Plate, B. Hermann, S. E. Ponta, and E.
Bodden, “Identifying challenges for oss vulnerability
scanners-a study & test suite,” IEEE Transactions on
Software Engineering, vol. 48, no. 9, pp. 3613–3625,
2021.

[14] J. Dietrich, S. Rasheed, A. Jordan, and T. White, “On
the security blind spots of software composition analy-
sis,” in Proceedings of the 2024 Workshop on Software
Supply Chain Offensive Research and Ecosystem De-
fenses, 2023, pp. 77–87.

[15] T. Dunlap, E. Lin, W. Enck, and B. Reaves,
“VFCFinder: Seamlessly pairing security advisories
and patches,” arXiv preprint arXiv:2311.01532, 2023.

[16] EO 14144: Strengthening and Promoting Innova-
tion in the Nation’s Cybersecurity, https://www.
federalregister.gov/documents/2025/01/17/
2025 - 01470 / strengthening - and - promoting -
innovation- in- the- nations- cybersecurity,
2025.

[17] P. I. Fusch Ph D and L. R. Ness, “Are we there yet?
Data saturation in qualitative research,” The Qualita-
tive Report, vol. 20, no. 9, pp. 1408–1416, 2015.

[18] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A.
Sasse, and S. Fahl, “How Does Usable Security (Not)
End Up in Software Products? Results From a Quali-
tative Interview Study,” in 43rd IEEE Symposium on
Security and Privacy, IEEE S&P 2022, May 22-26,
2022, IEEE Computer Society, May 2022.

[19] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li,
and A. Bates, “Nodoze: Combatting threat alert fatigue
with automated provenance triage,” in network and
distributed systems security symposium, 2019.

[20] N. Imtiaz, A. Khanom, and L. Williams, “Open or
sneaky? fast or slow? light or heavy?: Investigating
security releases of open source packages,” IEEE
Transactions on Software Engineering, vol. 49, no. 4,
pp. 1540–1560, 2022.

[21] N. Imtiaz, S. Thorn, and L. Williams, “A compara-
tive study of vulnerability reporting by software com-
position analysis tools,” in Proceedings of the 15th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2021,
pp. 1–11.

[22] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis
tools to find bugs?” In 35th IEEE/ACM International
Conference on Software Engineering (ICSE’13), IEEE,
IEEE, 2013, pp. 672–681.

[23] A. Krause, H. Kaur, J. H. Klemmer, O. Wiese, and S.
Fahl, ““That’s my perspective from 30 years of doing
this”: An Interview Study on Practices, Experiences,
and Challenges of Updating Cryptographic Code,”

[24] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. In-
oue, “Do developers update their library dependencies?
An empirical study on the impact of security advisories
on library migration,” Empirical Software Engineering,
vol. 23, pp. 384–417, 2018.

[25] V. B. Livshits and M. S. Lam, “Finding Security Vul-
nerabilities in Java Applications with Static Analysis.,”
in USENIX security symposium, vol. 14, 2005, pp. 18–
18.

[26] Log4j - CVE-2021-44228, https://nvd.nist.gov/
vuln/detail/cve-2021-44228.

[27] N. McDonald, S. Schoenebeck, and A. Forte, “Relia-
bility and inter-rater reliability in qualitative research:
Norms and guidelines for CSCW and HCI practice,”
Proceedings of the ACM on human-computer interac-
tion, vol. 3, no. CSCW, pp. 1–23, 2019.

[28] S. Mirhosseini and C. Parnin, “Can automated pull
requests encourage software developers to upgrade
out-of-date dependencies?” In 2017 32nd IEEE/ACM
international conference on automated software engi-
neering (ASE), IEEE, 2017, pp. 84–94.

https://www.cve.org/about/Metrics
https://www.cve.org/about/Metrics
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://nvd.nist.gov/vuln/detail/cve-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2021-44228

[29] J. Musseau, J. S. Meyers, G. P. Sieniawski, C. A.
Thompson, and D. German, “Is open source eating the
world’s software? measuring the proportion of open
source in proprietary software using Java binaries,” in
Proceedings of the 19th International Conference on
Mining Software Repositories, 2022, pp. 561–565.

[30] National Vulnerability Database: Opaque changes
and unanswered questions, https : / / anchore .
com/blog/national-vulnerability-database-
opaque-changes-and-unanswered-questions/.

[31] S. Nocera, S. Vegas, G. Scanniello, and N. Juristo,
“Software Composition Analysis and Supply Chain Se-
curity in Apache Projects: an Empirical Study,” 2025.

[32] P. Ombredanne, “Free and open source software license
compliance: Tools for software composition analysis,”
Computer, vol. 53, no. 10, pp. 105–109, 2020.

[33] H. Orsila, J. Geldenhuys, A. Ruokonen, and I. Ham-
mouda, “Trust issues in open source software develop-
ment,” Jan. 2009.

[34] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and
F. Massacci, “Vulnerable open source dependencies:
Counting those that matter,” in Proceedings of the 12th
ACM/IEEE international symposium on empirical soft-
ware engineering and measurement, 2018, pp. 1–10.

[35] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and
F. Massacci, “Vuln4real: A methodology for counting
actually vulnerable dependencies,” IEEE Transactions
on Software Engineering, vol. 48, no. 5, pp. 1592–1609,
2020.

[36] I. Pashchenko, D.-L. Vu, and F. Massacci, “A quali-
tative study of dependency management and its secu-
rity implications,” in Proceedings of the 2020 ACM
SIGSAC conference on computer and communications
security, 2020, pp. 1513–1531.

[37] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assess-
ment for vulnerabilities in open-source software li-
braries,” in 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE,
2015, pp. 411–420.

[38] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond meta-
data: Code-centric and usage-based analysis of known
vulnerabilities in open-source software,” in 2018 IEEE
International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2018, pp. 449–460.

[39] S. Reis and R. Abreu, “A ground-truth dataset of real
security patches,” arXiv preprint arXiv:2110.09635,
2021.

[40] K. Scarfone and P. Mell, “An analysis of CVSS ver-
sion 2 vulnerability scoring,” in 2009 3rd International
Symposium on Empirical Software Engineering and
Measurement, IEEE, 2009, pp. 516–525.

[41] P. Sharma, Z. Shi, Ş. Şimşek, D. Starobinski, and D. S.
Medina, “Understanding Similarities and Differences
Between Software Composition Analysis Tools,” IEEE
Security & Privacy, 2024.

[42] S. de Smale, R. van Dijk, X. Bouwman, J. van der Ham,
and M. van Eeten, “No one drinks from the firehose:
How organizations filter and prioritize vulnerability
information,” in 2023 IEEE Symposium on Security
and Privacy (SP), IEEE, 2023, pp. 1980–1996.

[43] J. Spring, E. Hatleback, A. Householder, A. Manion,
and D. Shick, “Time to Change the CVSS?” IEEE
Security & Privacy, vol. 19, no. 2, pp. 74–78, 2021.

[44] B. Stanton, M. F. Theofanos, S. S. Prettyman, and S.
Furman, “Security fatigue,” It Professional, vol. 18,
no. 5, pp. 26–32, 2016.

[45] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Red-
miles, “Social Barriers Faced by Newcomers Plac-
ing Their First Contribution in Open Source Software
Projects,” in Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social
Computing, ser. CSCW ’15, Vancouver, BC, Canada:
Association for Computing Machinery, 2015, pp. 1379–
1392.

[46] K.-J. Stol, M. A. Babar, P. Avgeriou, and B. Fitzger-
ald, “A comparative study of challenges in integrating
open source software and inner source software,” In-
formation and Software Technology, vol. 53, no. 12,
pp. 1319–1336, 2011.

[47] The gift that keeps on giving: A new opportunis-
tic Log4j campaign, https : / / securitylabs .
datadoghq . com / articles / the - gift - that -
keeps - on - giving - a - new - opportunistic -
log4j-campaign/, 2024.

[48] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C.
Gall, and A. Zaidman, “How developers engage with
static analysis tools in different contexts,” Empirical
Software Engineering, vol. 25, pp. 1419–1457, 2020.

[49] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng,
Y. Wu, and Y. Liu, “An empirical study of usages, up-
dates and risks of third-party libraries in java projects,”
in 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2020,
pp. 35–45.

[50] D. Wermke, J. H. Klemmer, N. Wöhler, J. Schmüser,
H. S. Ramulu, Y. Acar, and S. Fahl, ““Always Con-
tribute Back”: A Qualitative Study on Security Chal-
lenges of the Open Source Supply Chain,” in 44th IEEE
Symposium on Security and Privacy (S&P’23), IEEE,
May 2023, pp. 1545–1560.

https://anchore.com/blog/national-vulnerability-database-opaque-changes-and-unanswered-questions/
https://anchore.com/blog/national-vulnerability-database-opaque-changes-and-unanswered-questions/
https://anchore.com/blog/national-vulnerability-database-opaque-changes-and-unanswered-questions/
https://securitylabs.datadoghq.com/articles/the-gift-that-keeps-on-giving-a-new-opportunistic-log4j-campaign/
https://securitylabs.datadoghq.com/articles/the-gift-that-keeps-on-giving-a-new-opportunistic-log4j-campaign/
https://securitylabs.datadoghq.com/articles/the-gift-that-keeps-on-giving-a-new-opportunistic-log4j-campaign/
https://securitylabs.datadoghq.com/articles/the-gift-that-keeps-on-giving-a-new-opportunistic-log4j-campaign/

[51] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné,
Y. Acar, and S. Fahl, “Committed to Trust: A Qualita-
tive Study on Security & Trust in Open Source Soft-
ware Projects,” in 43rd IEEE Symposium on Security
and Privacy, IEEE S&P 2022, May 22-26, 2022, IEEE,
IEEE Computer Society, May 2022, pp. 1880–1896.

[52] Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zou, and H. Jin, “Un-
derstanding the threats of upstream vulnerabilities to
downstream projects in the maven ecosystem,” in 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), IEEE, 2023, pp. 1046–1058.

[53] J. Wunder, A. Kurtz, C. Eichenmüller, F. Gassmann,
and Z. Benenson, “Shedding light on CVSS scoring
inconsistencies: A user-centric study on evaluating
widespread security vulnerabilities,” in 2024 IEEE
Symposium on Security and Privacy (SP), IEEE, 2024,
pp. 1102–1121.

[54] A. Zerouali, T. Mens, A. Decan, and C. De Roover, “On
the impact of security vulnerabilities in the npm and
RubyGems dependency networks,” Empirical Software
Engineering, vol. 27, no. 5, p. 107, 2022.

[55] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, J. Wu, J. Sun,
and Y. Liu, “Software composition analysis for vulner-
ability detection: An empirical study on Java projects,”
in Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 960–
972.

[56] S. Zhou, B. Vasilescu, and C. Kästner, “How has fork-
ing changed in the last 20 years? a study of hard forks
on github,” in Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering, 2020,
pp. 445–456.

[57] M. Zimmermann, C.-A. Staicu, C. Tenny, and M.
Pradel, “Small world with high risks: A study of secu-
rity threats in the npm ecosystem,” in 28th USENIX
Security symposium (USENIX security 19), 2019,
pp. 995–1010.

A Interview Guide

S1 Participant Demographics
Can you tell us a little about the organization you are part of
and your role?

S2 SCA Demographics
Main question: Can you briefly explain your experience with
using SCA tools?

• What SCA tools are used in your workflow?

• What is the goal for using the SCA tool?

• How was the decision to pick this SCA tool made?

• If SCA tools are used in your organization: What kind
of projects integrate SCA tools?

– What projects do not integrate SCA tools?
– What is the reason for not using SCA tools?

• Do you run SCA on source code or binaries?

S3 SCA tool process
Main question: Could you give us an example of how you use
[SCA tool] in a project?

• How is [SCA tool] integrated into the SDLC?

• At which point of the SDLC is [SCA tool] triggered to
run?

• How often are they triggered?

• What applications do you run [SCA tool] on? (web appli-
cation, container images, directories, gh repos, microser-
vices etc?)

• Is there a policy or standardized process at your organi-
zation that governs how you work with [SCA tool]?

• What are some challenges you have run into when run-
ning the tools?

• From your experience, do the tools perform better at
certain programming languages or ecosystems?

S4 SCA tool report
Main question: Can you take us through a typical workflow
for interpreting the output / report from [SCA tool]?

• What follows after receiving the output / report from
[SCA tool]?

– Is there an automation process for managing the
SCA outputs?

• What do you look for when interpreting the output /
report?

• How are warnings / alerts from the SCA tool resolved?

– How is the decision on whether or not to resolve it
made?

– Who makes the call: developer / security engineer?
– What is the relationship between developer / secu-

rity engineer?
– What factors affect the decision to resolve or accept

risk?

• How are the warnings / alerts fixed?

– Do you run into compatibility issues when updat-
ing dependencies?

• Is there a process for prioritizing the SCA alerts?

• What are some challenges when interpreting the output /
report from [SCA tool]?

– Have you run into FP / FN from [SCA tool]?
– Can you walk us through how you would handle

FP / FN?

S5 SCA tool features

• What are existing [SCA tool] features you think have
been useful?

• What measures / signals / indicators from the tool have
been useful?

• Do you make modifications/patches to [SCA tool]?

– Can you describe how the modification/patch pro-
cess works?

• What other features / measures do you wish were avail-
able in [SCA tool]?

– Do you think reachability information would be
useful?

S6 Participant opinion

• What is your opinion on SCA tools?

• What do you think about different SCA tools and the
different results?

– Was this considered when choosing SCA tools?

• What other information on vulnerabilities and CVEs do
you wish are available?

• What do you think would help with SCA tools / vulnera-
ble components going forward?

• What is an ideal SCA tool in your opinion? Which fea-
tures do you value most?

• Anything relevant to the topic we haven’t discussed but
you want to mention?

B Codebook

1. Participant information

2. SCA tool usage

(a) SCA tool used
(b) Decisions on selection of SCA tool

e.g., tool output, easy to setup

i. switched tools
e.g., easy to deploy, scan requirements

(c) Goal of using tool
e.g., basic security, compliance audits

3. SCA tool integration / process

(a) Challenges / concerns
e.g., code privacy, unknowns in how tool worked

• SCA development
e.g., package manager changes, identifying li-
censes

(b) Integration
e.g., ide plugin, CI/CD pipeline

i. Type of application
ii. SCA tool run frequency

e.g., on code commit, every week

(c) Policies
(d) Modifications / patches to SCA tool

4. SCA tool report (output of the tool)

(a) Postprocess output / automation tooling
e.g., create ticket, resolve related vulnerability
alerts

(b) Resolving warnings / alerts

i. Decision on whether to resolve
ii. How to resolve

e.g., updating dependencies, exception, isolate
vulnerable component

iii. Time to resolve

(c) Prioritizing / interpreting alerts
e.g., severity, project importance

(d) FP / FN

i. determining if alert is TP / FP
e.g., manual review, developer decides

ii. reasons for FP
e.g., development dependencies, application
not exposed

5. SCA tool features

(a) Useful features
e.g., automatic pull request

(b) Less useful features / measures

6. Participant opinion

(a) Better SCA tools / vulnerability management
e.g., actionable findings, LLM inference

(b) Different SCA tools and different results
e.g., relevant results matter more, different results
can be frustrating

(c) Opinion on SCA tool
e.g., false sense of security

(d) Reachability
(e) Vulnerability data

e.g., CVEs need better standards

	Introduction
	Background and Related Work
	Methodology
	Study Setup
	Participant Recruitment
	Interview Procedure
	Coding and Analysis
	Limitations

	Results
	SCA Demographics
	Reason for using SCA tools
	Selecting SCA tools

	SCA Integration
	Input to SCA analyses
	SCA in the software development lifecycle
	Challenges when integrating SCA

	SCA Tool Report
	Interpreting vulnerability reports
	Fixing vulnerabilities
	False positives
	Tooling and automation around SCA output

	Developer Opinions
	Improvements for SCA

	Discussion
	Challenges with SCA Deployment
	Acting on SCA Results
	Improvements for the SCA process

	Conclusion
	Interview Guide
	Codebook

